Abstract

ABSTRACTPrevious research on rock weathering crusts has revealed their large variability depending on the type of host rocks and development of weathering processes. The composition of crusts developed on natural sandstone exposures is less documented in the literature in comparison to those developed on architectonic stones. In both cases, previous research has focused mainly on the progress of salt weathering. This study considers the surfaces of sandstone tors in the Polish Outer Carpathians. The exposed parts of the rocks in this area are often covered by crust, which is up to several centimetres thick, and differs from the internal part in colour and composition. The crusts were characterized using light and electron microscopy, X‐ray diffractometry, thermal analyses, Mössbauer spectroscopy, bulk chemical analyses and sequential chemical extractions. Porosity was estimated by digital image processing. The following two hardened zones were observed: (1) thin (up to 30 µm), black, external layer, rich in carbon and composed of opal‐type silica, covered in places by sulphate incrustations and numerous spherical particles of anthropogenic origin; (2) thicker (up to several millimetres), internal part composed of a set of laminae of variable colouration, enriched in iron (oxyhydr)oxides (goethite and hematite) in comparison to the rock interior. Development of the crust results from silicon and iron redistribution during the sandstone alteration. The chief source of silica is hydrolysis of aluminosilicates, whilst that of iron is decomposition of aluminosilicates, carbonates and sulphides. Hematite is probably a result of goethite transformation. However, air pollutants may play an important role in the formation of sulphates. Silica and iron compounds affect the properties of the rock, hardening the surface and lowering porosity by formation of secondary cement. Crystallization of sulphate salts, in turn, may contribute to mechanical disintegration of the rock. Copyright © 2013 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.