Abstract

Physiological studies have provided evidence for the existence of ryanodine receptor (RyR) Ca(2+) channels in compound eyes of insects. The present study identifies and localizes RyR in insect photoreceptors by use of an affinity-purified antibody against lobster muscle RyR. Western blotting and indirect immunofluorescence staining confirm cross-reactivity of the antibody with insect muscle RyR. In both honeybee and fly eyes, the antibody identifies a single protein that comigrates with muscle RyR on sodium dodecylsulfate (SDS) polyacrylamide gels demonstrating that RyR is present in this tissue. By confocal immunofluorescence microscopy on honeybee eyes, RyR is detected within the photoreceptors and shows a nonhomogeneous distribution over the endoplasmic reticulum (ER). Double labeling studies have demonstrated further that RyR is localized at distinct ER elements close to the light-sensitive microvilli and juxtaposed to adherens junctions. RyR has also been observed within the remaining soma of honeybee photoreceptors, being concentrated on ER cisternae close to mitochondria and the nonreceptive plasma membrane. For comparative purposes, the distribution of RyR has also been assayed in compound eyes of flies. In both Calliphora and Drosophila photoreceptors, the anti-RyR antibody provides punctate labeling throughout the cell body. The submicrovillar ER cisternae associated with the base of the microvilli, however, are only lightly labeled for RyR. These results suggest that RyR is involved with Ca(2+) regulation in the nonreceptive cell area of both fly and honeybee photoreceptors, but that it may contribute to Ca(2+) regulation close to the phototransduction compartment only in the latter cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.