Abstract

1. In alloys of the Mo-Re system liquation of rhenium is low (K=1.1) and it does not depend/either on the rhenium content or on the set of deoxidizing and microalloying additions contained in the alloy. 2. Liquation of tungsten in alloys of the Mo-W system is greater (K=−1.3), but it also does not depend on its content in the alloy. 3. In alloys of the system Mo-W-Re after single remelting liquation of rhenium is the same throughout the volume of the ingot. The degree of rhenium liquation in ternary alloy is the same as in binary alloys of the Mo-Re system. 4. The degree of tungsten liquation in an ingot of an alloy of the Mo-W-Re system after single-stage remelting is considerably higher in the central zone of an ingot than in the outer zones, and it exceeds the degree of its liquation in binary alloys of the Mo-W system. After secondary remelting tungsten liquation in ternary alloys is the same as in binary alloys, and it is also the same throughout the whole volume. 5. Inhomogeneous distribution of tungsten and rhenium in alloy of the Mo-W-Re system arising as a result of its nonuniform crystallization is also retained after ingot deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.