Abstract

Hepatic stellate cells play a major role in retinylester storage in mammals, but the retinoid-storing state in nonmammalian vertebrates remains to be elucidated. In this study, we examined retinoids and retinoid-storing cells in the arrowtooth halibut, Atheresthes evermanni. High-performance liquid chromatography analyses revealed the highest concentrations of stored retinoids (retinol and retinylester, 6199 nmol/g) in the pyloric cecum, a teleost-specific organ protruding from the intestine adjacent to the pylorus. Considerable amounts of retinoids were also stored in the intestine (3355 nmol/g) and liver (1891 nmol/g), and small amounts in the kidney (102 nmol/g). Very small amounts or no retinoids were detected in the heart, gill, skeletal muscle, and gonads (less than 2 nmol/g). Use of gold chloride staining and fluorescence microscopy to detect retinoid autofluorescence showed that, in the pyloric cecum and intestine, retinoid-storing cells were localized in the lamina propria mucosae. Under electron microscopy, cells containing well-developed lipid droplets, which are common morphological characteristics of the hepatic stellate cells of mammals, were observed in the lamina propria mucosae of the pyloric cecum. Thus, the distribution of stellate cells with retinoid-storing capacity differs between this halibut and mammals, suggesting that the retinoid-storing site has shifted during vertebrate evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call