Abstract

We study the distribution of resonances for geometrically finite hyperbolic surfaces of infinite area by counting resonances numerically. The resonances are computed as zeros of the Selberg zeta function, using an algorithm for computation of the zeta function for Schottky groups. Our particular focus is on three aspects of the resonance distribution that have attracted attention recently: the fractal Weyl law, the spectral gap, and the concentration of decay rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.