Abstract

As the Xingshugang Oilfield is in the late stage of development, a conventional geological model could not meet the needs of further enhancing oil recovery, and the establishment of a fine 3-D geological model, namely the 3-D reservoir architecture model, is urgently required. The 3-D reservoir architecture model has a strong advantage in the detailed characterization of the distribution of various architectural elements and flow baffles and barriers in 3-D space. Based on the abundant data from close well spacing, in combination with the understanding of sedimentary facies and reservoir architecture, this study builds the 3-D reservoir architecture model to show the spatial distribution of different architectural elements and intercalations (mud drapes) under the control of third-, fourth- and fifth-order bounding surfaces. The study then establishes the property model under the control of sedimentary facies (architectural elements). Subsequently, based on the fine 3-D geological model, the distribution of remaining oil is obtained after the numerical reservoir simulation. The remaining oil primarily lies in the port of channel bifurcation, the parts blocked by intercalations and abandoned channels, and the edges of different facies. This observation provides a theoretical basis for further development and adjustment.

Highlights

  • A reservoir geological model is the comprehensive integration of oil and gas field production geology

  • As the Xingshugang Oilfield is in the late stage of development, a conventional geological model could not meet the needs of further enhancing oil recovery, and the establishment of a fine 3-D geological model, namely the 3-D reservoir architecture model, is urgently required

  • The remaining oil primarily lies in the port of channel bifurcation, the parts blocked by intercalations and abandoned channels, and the edges of different facies

Read more

Summary

Introduction

A reservoir geological model is the comprehensive integration of oil and gas field production geology. Based on the abundant data from close well spacing, in combination with the understanding of sedimentary facies and reservoir architecture, this study builds the 3-D reservoir architecture model to show the spatial distribution of different architectural elements and intercalations (mud drapes) under the control of third-, fourth- and fifth-order bounding surfaces.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call