Abstract

An anode functional layer (AFL) is inserted between anode substrate and electrolyte thin-film to increase the triple phase boundary (TPB) for anode-supported solid oxide fuel cells (SOFCs). On the other hand, better mechanical robustness, redox tolerance, rapid thermal cycling and cost reduction are expected for metal-supported SOFCs. The anode thickness of metal-supported cells (MSCs) is more important than the AFL thickness of anode-supported cells (ASCs), since the metallic substrate does not have TPB. In the present work, the metal-supported microtubular SOFCs with La0.6Sr0.4Co0.2Fe0.8O3(LSCF)-(Ce0.9Gd0.1)O1.95(GDC) cathode, GDC electrolyte, BaCe0.8Y0.2O3- d (BCY) blocking layer and Ni-GDC anode on Ni substrate were investigated. It was confirmed by the distribution of relaxation times (DRT) analysis that the polarization resistance increased with decreasing the anode thickness from 23 to 10 mm for the metal-supported microtubular SOFCs operated at 550 oC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.