Abstract

It is believed that pausing during mRNA translation plays some role in ensuring proper folding of newly synthesized sections of a protein chain. Such pausing occurs when rare triplets are encountered in the mRNA, as it takes additional time for the corresponding rare species of tRNA to be delivered. To determine whether pause sites are non-randomly distributed along prokaryotic mRNA (cDNA), we have located clusters of rare triplets in cDNA sequences from 21 different bacteria. From the individual profiles of local codon frequencies calculated with various windows, the positions of the clusters of the rarest codons were taken for generation of the combined histograms of positional preferences of the pause sites. The histograms show that in the prokaryotic sequences, the pause sites are located preferentially at the start positions and at about 155 triplets from the starts. To verify the generality of these observations, the data are grouped in six independent sets about 500 sequences each, all revealing the same features. A less prominent maximum is also seen at the triplet position 75. Judging by the amplitude of the peak at 155 triplets, an optimal cluster size is estimated to equal 18 triplets. The distance 155 closely corresponds to the sizes of typical protein folds and to earlier estimated prokaryotic protein sequence segments. This supports the suggestion of a role for translation pausing in the cotranslational folding of protein domains. The profiles of rare codons in mRNA can serve in the detection or prediction of boundaries between protein domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call