Abstract
We identified original tissue-committed precursors with limited self-renewal capacity from human corneal stromal (HCS) cells and human corneal endothelial (HCE) cells, then tried to determine the distribution and proliferative capacity of the precursors. Experimental study. Eighteen human corneas from donors 56 to 68 years old. Human corneal stromal cells were divided into groups based on distance from the center of the cornea: <6 mm (central), 6 to 8 mm (paracentral), and 8 to 10 mm (peripheral). Human corneal endothelial cells were separated into 2 groups: <7.5 mm (central) and 7.5 to 10 mm (peripheral) from the center. Each group was subjected to the sphere-forming assay using serum-free medium containing growth factors in floating culture. Sphere numbers and the proliferative capacity of spheres in adherent culture were compared among the groups. Density and proliferative capacity of precursors from each area of HCS and HCE cells. Primary spheres were isolated from all groups of HCS and HCE cells. The rate of primary sphere formation from peripheral HCS cells was higher than those of the other 2 groups, being 1.5-fold greater than in the paracentral cornea and 4-fold greater than in the central cornea. The rate of primary sphere formation by peripheral HCE cells was significantly higher than that by central HCE cells, being 4-fold greater than in the central cornea. There were no differences in the proliferative capacity of HCS and HCE cell spheres from the different areas after adherent culture. All HCS and HCE cells contain a significant number of precursors, but the peripheral cells have a density of precursors higher than that of the central cells. Precursors from each area do not show differences of proliferative capacity. Our findings may in part explain changes after excimer laser treatment and may have implications for corneal transplantation procedures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.