Abstract

To quantify angular excursions; net joint moments; and powers across the stifle, tarsal, and metatarsophalangeal (MTP) joints in Labrador Retrievers and Greyhounds and investigate differences in joint mechanics between these 2 breeds of dogs. 12 clinically normal dogs (6 Greyhounds and 6 Labrador Retrievers) with no history of hind limb lameness. Small retroreflective markers were applied to the skin over the pelvic limb joints, and a 4-camera kinematic system captured data at 200 Hz in tandem with force platform data while the dogs trotted on a runway. Breed-specific morphometric data were combined with kinematic and force data in an inverse-dynamics solution for stance-phase net joint moments and powers at the stifle, tarsal, and MTP joints. There were gross differences in kinematic patterns between Greyhounds and Labradors. At the stifle and tarsal joints, moment and power patterns were similar in shape, but amplitudes were larger for the Greyhounds. The MTP joint was a net absorber of energy, and this was greater in the Greyhounds. Greyhounds had a positive phase across the stifle, tarsal, and MTP joints at the end of stance for an active push-off, whereas for the Labrador Retrievers, the only positive phase was across the tarsus, and this was small, compared with values for the Greyhounds. Gross differences in pelvic limb mechanics are evident between Greyhounds and Labrador Retrievers. Joint kinetics in specific dogs should be compared against breed-specific patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call