Abstract

We have developed a semi-analytic method of calculating the changes in heliocentric Keplerian orbital elements due to gravitational scattering by a protoplanet as a three-body problem. In encounters with high incident velocities, either the gravity of the protoplanet or the solar gravity can be regarded as perturbation force. In close encounters, by taking into account the solar gravity as a perturbation, we modified the two-body gravitational scattering. On the other hand, in slightly distant encounters, we apply the perturbing force of the protoplanet to the heliocentric Keplerian orbit of planetesimals. As a result, as for high-velocity encounters, the three-body problem is semi-analytically solvable. Our semi-analytic method can reproduce the numerical result of the orbital changes of individual planetesimals for the broad range of high-energy encounters with surprising high accuracy. We found that our method is valid under the conditions (i)b0≳ 2 and (ii) (e20+i20− 34b20)1/2≳ 4, wheree0andi0are eccentricity and inclination of relative motion normalized by the reduced Hill radius andb0is the difference between semimajor axes normalized by the Hill radius. Though our method needs some numerical procedure, its cpu time is negligibly short compared with that of the direct orbital integration. In simulation of orbital evolution of planetesimals around a protoplanet in the gas, which we will perform in the subsequent paper, most encounters can be calculated by the semi-analytic method. This makes it possible to perform the long term (∼105years) orbital calculation of ∼103–4planetesimals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.