Abstract

The partitioning of phosphatidylcholine (PC) molecular species between mixed micelles and vesicles was studied in each of seven human gallbladder biles. Biles were fractionated by Sephacryl S-300 SF gel filtration chromatography, and PC species in the micellar and vesicular fractions were quantitated by high performance liquid chromatography. Micelles were enriched in species containing unsaturated acyl groups (e.g., 16:1-18:2, 18:1-18:2, and 18:1-18:3); vesicles were enriched in more highly saturated species (e.g., 16:0-16:1, 16:0-18:1, and 18:0-18:1). Separate multivariate analyses for each bile demonstrated that the distribution of PC species between vesicles and micelles was related to the degree of sn-1 and sn-2 unsaturation, and sn-1, but not sn-2, chain length. In addition, the tendency to partition into the micellar phase was particularly marked when unsaturation was present at both the sn-1 and sn-2 positions. When this interaction was included in the multivariate analyses, the regression models accounted for virtually all of the variation in PC partitioning (for each of the seven patients r2 = 0.92-0.98, P less than 0.03). These results suggest that the partitioning of PC species between micelles and vesicles is strictly determined by sn-1 chain length and the degree of unsaturation at both the sn-1 and sn-2 positions. In light of recent reports that fatty acyl composition influences the cholesterol content of vesicles and micelles in model biles, these results raise the possibility that diet-induced alterations in the phospholipid species and the relative proportions of biliary lipid particles may influence the cholesterol-carrying capacity of bile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call