Abstract

Intraganglionic laminar endings (IGLEs) represent the major vagal afferent terminals throughout the gut. Electrophysiological experiments revealed a modulatory role of ATP in the IGLE-mechanotransduction process and the P2X(2)-receptor has been described in IGLEs of mouse, rat and guinea pig. Another purinoceptor, the P2X(3)-receptor, was found in IGLEs of the rat esophagus. These findings prompted us to investigate occurrence and distribution of the P2X(3)-receptor in the mouse esophagus. Using multichannel immunofluorescence and confocal microscopy, P2X(3)-immunoreactivity (-iry) was found colocalized with the vesicular glutamate transporter 2 (VGLUT2), a specific marker for IGLEs, on average in three-fourths of esophageal IGLEs. The distribution of P2X(3) immunoreactive (-ir) IGLEs was similar to that of P2X(2)-iry and showed increasing numbers towards the abdominal esophagus. P2X(3)/P2X(2)-colocalization within IGLEs suggested the occurrence of heteromeric P2X(2/3) receptors. In contrast to the rat, where only a few P2X(3)-ir perikarya were described, P2X(3) stained perikarya in ~80% of myenteric ganglia in the mouse. Detailed analysis revealed P2X(3)-iry in subpopulations of nitrergic (nNOS) and cholinergic (ChAT) myenteric neurons and ganglionic neuropil of the mouse esophagus. We conclude that ATP might act as a neuromodulator in IGLEs via a (P2X(2))-P2X(3) receptor-mediated pathway especially in the abdominal portion of the mouse esophagus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.