Abstract

Soil humus comprises a large and stable pool of soil organic matter (SOM); hence a better understanding of the fate of C in soil humic fractions can provide valuable information for the development of alternative tillage practices that will lead to long-term soil C sequestration. We used δ13C techniques to investigate the effects of tillage on the dynamics of native (C3–C) and corn derived C (C4–C) in fulvic acid (FA), humic acid (HA) and humin fractions. Humic substances were extracted from soils cropped to corn for 11 yr and managed under either conventional (CT) or no-tillage (NT), and from a conventionally tilled soil under > 55 yr of tobacco/rye rotation. No-tillage resulted in higher proportions of C4–C in the upper 5 cm and generally lower C4–C proportions below 5 cm than CT. Up to 31, 27 and 34% of C4–C were assimilated into FA, HA and humin fractions, respectively, indicating that even the humin fraction, often described as passive, old or resistant, acted as a sink of recently added C, and that it is heterogeneous with some of its components being young. Recovery of large proportions of C3–C in the humic fractions demonstrated their importance in the long-term stabilization of SOM. Within each sampling depth, there were no unique differences in the distribution of C3–C among the three humic fractions, suggesting similar turnover of C3–C in all the fractions. Therefore, there was no unique active fraction corresponding with the concept of C pools with defined turnover characteristics used in models of SOM turnover. Key words: Soil humic fractions, corn derived C, native C, δ13C techniques, tillage practices

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call