Abstract

To characterize the oligosynaptic group I afferent input to the cat medial gastrocneumius (MG) motoneuron pool, the medial branch of the tibial nerve (MTIB: flexor digitorum and hallucis longus, popliteus, tibialis posterior and interosseous nerves), the nerves to flexor digitorum and hallucis longus (FDHL), or the nerves to the quadriceps muscles (QUAD) were stimulated at submaximal group I strength while recording intracellularly from MG motoneurons. Since previous work indicates that stimulation of these nerves at group I strength produces no significant monosynaptic Ia excitation or Renshaw inhibition of MG motoneurons, group I effects were assumed to be predominantly, though not exclusively, due to the action of Ib-fibers. Evidence supporting this assumption is presented in the following paper. MTIB, FDHL, and QUAD postsynaptic potentials (PSPs) were most commonly inhibitory. Since the MTIB, FDHL, and QUAD nerves are composed predominantly of fibers innervating muscles with extensor action, their inhibitory effect on MG motoneurons is consistent with previous findings that stimulation of Ib-afferents in nerves to extensor muscles produces di- and trisynaptic inhibition of extensor motoneurons. However, excitatory effects were observed in about one third of the motoneurons, indicating that oligosynaptic group I input is not homogeneously distributed within the MG motoneuron pool. Variations in QUAD, FDHL, and MTIB PSP pattern and amplitude were correlated with variations in the PSP pattern evoked by stimulation of the sural nerve: excitatory oligosynaptic group I PSPs generally appeared in motoneurons receiving excitatory cutaneous (sural nerve) input, whereas inhibitory PSPs generally appeared in motoneurons receiving some inhibitory cutaneous input and were largest in motoneurons receiving predominantly inhibition from the sural nerve. These variations in QUAD, FDHL, and MTIB PSP pattern and amplitude were not due to variations in resting potential and were only partly due to variations in intrinsic motoneuron properties or motoneuron "type." Our results indicate that activation of these cutaneous and group I muscle afferents can exert similar effects on the MG motoneuron pool. Moreover, the presence of a strong correlation between the distributions of cutaneous and oligosynaptic group I PSPs within a single motoneuron pool is consistent with the results of previous studies that have shown that some of the input to motoneurons from these peripheral afferents is mediated through common interneurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call