Abstract

The distribution of nonlinear wave crests is examined on the basis of a theoretical probability density previously given elsewhere (J. Eng. Mech. 120 (1994) 1009). Certain errors contained in the original theoretical density are corrected, and the corresponding exceedance distribution is derived. The resulting theoretical forms of the probability density and exceedance distribution are then slightly simplified and compared with nonlinear wave data gathered under hurricane conditions. The results indicate that the proposed theoretical forms describe the observed distributions of large wave crests better than the Rayleigh law. However, the quantitative accuracy of the predictions is somewhat poor, as is typical of approximate theories based on Gram–Charlier-type expansions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.