Abstract

Neuronal activity was studied in the premotor cortex (PM) of two rhesus monkeys, each of which performed both forelimb and hindlimb movements. On each trial, the monkey received a visual instruction stimulus (IS) that indicated whether a foot or a hand movement would be rewarded on that trial. After a delay period, during which the monkey withheld an overt movement, a visual trigger stimulus (TS) was presented to indicate that the monkey should execute a movement. Of 572 task-related neurons recorded in PM, 149 neurons showed set-related activity, defined as a significant increase or decrease in discharge rate throughout most of the instructed delay period, and 299 neurons showed movement-related activity, defined as a significant change in discharge rate between the TS and movement onset. Both set- and movement-related activity were subdivided into three patterns: activity modulation 1) before a foot movement only ("foot" neurons); 2) before a hand movement only ("hand" neurons); and 3) before both foot and hand movements ("mixed" neurons). The distribution of set-related neurons mostly overlapped with that of movement-related neurons, although set-related neurons were located in more restricted regions than movement-related neurons. "Foot" neurons with set- and movement-related activity were distributed near the superior precentral sulcus. "Hand" neurons were mainly located lateral to the "foot" neurons with some overlap. The results indicate that most PM set- and movement-related neurons contribute, respectively, to the preparation for and execution of specific limb movements, as opposed to movement per se. Further, the differential distribution of neurons with activity related to hindlimb vs. forelimb movement supports previous indications that PM is topographically organized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call