Abstract
Spatial and temporal distribution of microplastics (MPs) in the nearshore seafloor sediments along the Southwest coast of India and their patterns of accumulation in selected infaunal and epibenthic molluscs with diverse feeding strategies were investigated. Along the 300-km coastal stretch, which is one of the most productive and biodiversity rich regions of the eastern Arabian Sea, notable levels of MP contamination in both sediment (617.7 items/kg dry weight) and molluscs (5.39 items/g) was recorded. The concentration of MPs in sediments also varied seasonally, with a higher prevalence during the post-monsoon season. Among the four molluscan groups studied, the highest MP abundance was recorded among scavenging gastropod Pseudominolia biangulosa (9.13 items/g), followed by microcarnivore scaphopod Tesseracme quadrapicalis (5.96 items/g). In comparison, the suspension feeding bivalve, Anadara hankeyana and deposit feeding clam Jitlada philippinarum had lesser accumulation of MPs (2.98 items/g and 3.50 items/g respectively). The majority of MPs in sediments and within molluscs were less than 250 μm in size (89.14%) and were predominantly fibres and fragments. Chemical characterisation of MPs revealed eleven types of polymers dominated by polyethylene (PE) and polypropylene (PP). Present study identified positive correlations between ingested MP polymers and the feeding strategies of molluscs. Higher values for the ecological risk assessment indices (PHI, PLI and PERI) in most of the stations indicated the severity of plastic pollution in the region. Molluscs being a major contributor to the benthic food web is also a connecting link to higher trophic levels. Hence understanding the specificity in the MPs accumulation pattern within this group has far reaching significance in utilizing them as potential bioindicators for pollution studies in marine ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.