Abstract
The distribution of mass within the vertebrate skeletal thick filament has been determined by scanning transmission electron microscopy. Thick and thin filaments from fresh rabbit muscle were mixed with tobacco mosaic virus (TMV), fixed with formaldehyde, dried onto thin carbon films and viewed in a computer-linked microscope. Electron scattering data from both TMV and thick filaments were analysed with reference to the long axis of the particles so that the distribution of mass within the particles could be determined. While TMV appeared to be a uniform rod at the resolution employed (4.3 nm), the thick filament was clearly differentiated along its length. M-line remnants at the centre of the filament were flanked by regions of low mass per unit length, corresponding to the bare zone of the filament, and then by the more massive cross-bridge regions. The mass per unit length was approximately constant through most of the cross-bridge zone and declined at the filament tips, in a manner consistent with a constant number of myosin molecules per 14.3 nm interval (crown) throughout the cross-bridge zone. Fourier analysis of the data failed to detect the expected 43 nm periodicity of C-protein. The total mass of the thick filament was 184 Mdalton (s.e.m., 1.6 × 10 6; n = 70). The mass of adhering M-line proteins was highly variable but, on average, was about 4 Mdalton. The total mass of the filament and the mass distribution in the cross-bridge zone are consistent with three myosin molecules per crown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.