Abstract

We have recently demonstrated that low-density lipoprotein (LDL) apoprotein is able to bind the most concentrated plasma thiols such as cysteine, cysteinylglycine, and homocysteine by disulfide linkage. However, the LIF CE assay employed to measure linked thiols was not sensitive enough to verify whether low concentrated plasma thiols as glutathione and glutamylcysteine are also linked to apoprotein. By modifying sample treatment and electrophoretic parameters we set up a new method with an LOQ of about 1.5 nmol/L, by which we demonstrate that LDL apoprotein binds all physiological plasma thiols. The increased sensitivity was obtained by drying released apoB thiols after reduction treatment, dissolving them directly in a low volume of derivatization buffer and decreasing the dilution factor of derivatized sample before CE injection. Moreover, by increasing the concentration of the electrolyte buffer, we improved the selectivity of peaks, in particular between glutathione (GSH) and the impurity peak derived from unreacted 5-iodoacetamidofluorescein, which in the previous electrophoretic conditions were overlapped. The method optimization, reached by searching the best combination between sample matrix and CE run buffer, is fully described. Given the potential pathologic significance of protein thiolation, the proposed method may be useful to understand the mechanisms and the balances that regulate the interaction between thiols and -SH free groups of proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.