Abstract
The axial distribution of large biomass particles in bubbling fluidized beds comprised of sand and biomass is investigated in this study. The global and local pressure drop profiles are analyzed in mixtures fluidized at superficial gas velocities ranging from 0.2 to 1 m/s. In addition, the radioactive particle tracking technique is used to track the trajectory of a tracer mimicking the behavior of biomass particles in systems consisting of 2, 8, and 16% of biomass mass ratio. The effects of superficial gas velocity and the mixture composition on the mixing/segregation of the bed components are explored by analyzing the circulatory motion of the active tracer. Contrary to low fluidization velocity (U = 0.36 m/s), biomass circulation and distribution are enhanced at U = 0.64 m/s with increasing the load of biomass particles. The axial profile of volume fraction of biomass along the bed is modeled on the basis of the experimental findings. © 2014 American Institute of Chemical Engineers AIChE J, 60: 869–880, 2014
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.