Abstract

The distribution of iron in multicrystalline silicon ingots for solar cells has been studied. A p- and a n-type multicrystalline ingot were intentionally contaminated by adding 53ppmwt (μg∕g) of iron to the silicon feedstock and compared to a reference p-type ingot produced from ultrapure silicon feedstock. The vertical total iron distribution was determined by neutron activation analysis and glow discharge mass spectrometry. For the intentionally Fe-contaminated ingots, the distribution can be described by Scheil’s equation with an effective distribution coefficient of 2×10−5. The interstitial iron concentration was measured in the p-type ingots. In the Fe-contaminated ingot, it is almost constant throughout the ingot and constitutes about 50% of the total concentration, which is in conflict with the previous studies. Gettering had a large impact on the interstitial iron levels by reducing the concentration by two orders of magnitude. Considerable trapping was observed at crystal defects on as-cut wafers from the same ingot. The trapping was suppressed by gettering. The back diffusion of iron from the ingot top after complete solidification was modeled and found to affect the iron concentration up to a distance of approximately 17mm into the ingot. The interstitial as well as the total iron concentration of the reference ingot were extremely low and difficult to measure accurately.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.