Abstract

The distribution of immunoreactivity to the receptor for substance P, the neurokinin 1 (NK1) receptor, was examined in preganglionic sympathetic neurons of the rat by using immunohistochemistry and retrograde neuronal tracing. About one-third of all sympathetic preganglionic neurons were NK1 receptor immunoreactive, and most of the NK1 receptor-immunoreactive neurons were also nitric oxide synthase immunoreactive. The proportions of sympathetic preganglionic neurons projecting to the superior and inferior mesenteric ganglia, adrenal gland, and lumbar sympathetic chain which were NK1 receptor-immunoreactive were determined. Most (89%) of the preganglionic neurons projecting to the adrenal glands were NK1 receptor immunoreactive. Few (17%) of the preganglionic neurons projecting to the L5 sympathetic chain ganglion were immunoreactive for the receptor, while preganglionic neurons projecting to the prevertebral ganglia were NK1 receptor immunoreactive at intermediate frequencies (61-64%). Thus, substance P acting on NK1 receptors is likely to be important in the preganglionic pathways to the adrenal medulla and viscera via the prevertebral ganglia, but is unlikely to be important in pathways to the lumbar sympathetic chain. The co-localisation of the NK1 receptor with the enzyme nitric oxide synthase was also examined. The majority of NK1 receptor-immunoreactive neurons were also nitric oxide synthase immunoreactive. Thus NK1 receptors occur on preganglionic neurons over many spinal segments and in a range of preganglionic pathways, as well as in a range of combinations with nitric oxide synthase. The heterogeneity of preganglionic neurons showing NK1 receptor immunoreactivity may reflect the involvement of NK1-mediated transmission in a variety of functional pathways, most notably the preganglionic projections to the adrenal medulla and to the viscera.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call