Abstract

Nutrient management in shallow transitional aquatic systems is very complex due to the sediment-water exchange, especially for phosphorus. The present study tries to get an in-depth understanding of the distribution of geochemical forms of phosphorus in the surface sediments of Beypore Estuary, a tropical estuarine system in southwest India, which has been subjected to immense climate change in recent times. Total phosphorus in the sediments was found to be abysmally lower (76.8 to 889.12µg/g) than those reported for other tropical estuaries. Organic-bound phosphorus constituted the majority of the total phosphorus in the sediments, and unlike other tropical estuaries, iron-bound and calcium-bound phosphorus were minor fractions in the study region. However, the bioavailable phosphorus was consistent throughout the study period and varied from 16.5 to 51.0% of total phosphorus. This reveals the active phosphorus buffering in the Beypore Estuary even in the absence of an external source. Statistical evaluation of two contrasting seasons (low and high runoff periods) could illustrate the major biogeochemical pathways for phosphorus in the Beypore Estuary. This study highlights the significant role of hydrographical parameters in regulating phosphorus bioavailability in this estuary; therefore, any modifications to the same by climate change could make nutrient management even more challenging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call