Abstract

The distribution of GABAergic neurons was investigated in the diencephalon of the African lungfish, Protopterus annectens, by using specific antibodies directed against glutamic acid decarboxylase (GAD). A dense population of immunoreactive perikarya was observed in the periventricular preoptic nucleus, whereas the caudal hypothalamus and the dorsal thalamus contained only scattered positive cell bodies. Clusters of GAD-positive cells were found in the intermediate lobe of the pituitary. The diencephalon was richly innervated by GAD-immunoreactive fibers that were particularly abundant in the hypothalamus. In the periventricular nucleus, GAD-positive fibers exhibited a radial orientation, and a few neurons extended processes toward the third ventricle. More caudally, a dense bundle of GAD-immunoreactive fibers coursing along the ventral wall of the hypothalamus terminated into the median eminence and the neural lobe of the pituitary. Double-labeling immunocytochemistry revealed that GAD and neuropeptide tyrosine (NPY)-like immunoreactivity was colocalized in a subpopulation of perikarya in the periventricular preoptic nucleus. The proportion of neurons that coexpressed GAD and NPY was higher in the caudal region of the preoptic nucleus. The distribution of GAD-immunoreactive elements in the diencephalon and pituitary of the African lungfish indicates that GABA may act as a hypophysiotropic neurohormone in Dipnoans. The coexistence of GAD and NPY in a subset of neurons of the periventricular preoptic nucleus suggests that GABA and NPY may interact at the synaptic level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call