Abstract

The distribution patterns of GABA immunoreactive (+) and immunonegative (-) amacrine cell synapses and profiles in the inner plexiform layer (IPL) were analyzed in three macaque monkey retinas using postembedding electron-microscopic (EM) immunogold cytochemistry. Synapses and profiles were counted at 5% intervals throughout the IPL depth in three EM montages (total area = 6509 microns 2), with 0% depth at the inner nuclear layer/IPL border. Nearly 70% of all amacrine synapses were GABA+, and they contacted all major classes of neurons that arborize in the IPL: bipolars (45%), ganglion cells (25%), and GABA+ (20%) and GABA- (10%) amacrines. A major relationship was seen between GABA+ amacrine processes and bipolar terminals: 76% of all amacrine-to-bipolar synapses were GABA+, and 82% of bipolar output dyads contained at least one GABA+ amacrine. GABA+ amacrine profiles (N = 2455) were concentrated in three wide bands at IPL depths of 0-25%, 40-60%, and 75-100%, corresponding to the dense bands seen with light-microscopic immunocytochemistry. In contrast, GABA+ amacrine synapses (N = 1081) were distributed evenly throughout the IPL depth, rather than being confined to the three dense bands. GABA- amacrine synapses (N = 516) were concentrated at 40% and 60% depths. Each category of amacrine output synapses had a characteristic pattern of stratification in the IPL. GABA+ amacrine-to-bipolar synapses occurred throughout the IPL but were most frequent at 20% and 80% IPL depths, where the dendrites of midget cone bipolars arborize (Polyak, 1941). In contrast, GABA+ amacrine-to-ganglion cell synapses were concentrated at 30% and 70% IPL depths, near the dendritic arborizations of parasol ganglion cells (Watanabe & Rodieck, 1989). GABA+ synapses onto bipolars and amacrines were also concentrated at the level of rod bipolar terminals. GABA+ amacrines must play significant but different roles in ON and OFF midget and parasol pathways as well as the rod pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call