Abstract

We present an analytical expression for the first return time (FRT) probability density function of a stationary correlated signal. Precisely, we start by considering a stationary discrete-time Ornstein-Uhlenbeck (OU) process with exponential decaying correlation function. The first return time distribution for this process is derived by adopting a well-known formalism typically used in the study of the FRT statistics for nonstationary diffusive processes. Then, by a subordination approach, we treat the case of a stationary process with power-law tail correlation function and diverging correlation time. We numerically test our findings, obtaining in both cases a good agreement with the analytical results. We notice that neither in the standard OU nor in the subordinated case a simple form of waiting time statistics, like stretched-exponential or similar, can be obtained while it is apparent that long time transient may shadow the final asymptotic behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.