Abstract

The biphasic reaction course, fallover, of carboxylation catalysed by ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) has been known as a characteristic of the enzyme from higher land plants. Fallover consists of hysteresis in the reaction seen during the initial several minutes and a very slow suicide inhibition by inhibitors formed from the substrate ribulose-1,5-bisphosphate (RuBP). This study examined the relationship between occurrence of fallover and non-catalytic RuBP-binding sites, and the putative hysteresis-inducible sites (Lys-21 and Lys-305 of the large subunit in spinach RuBisCO) amongst RuBisCOs of a wide variety of photosynthetic organisms. Fallover could be detected by following the course of the carboxylase reaction at 1 mM RuBP and the non-catalytic binding sites by alleviation of fallover at 5 mM RuBP. RuBisCO from Euglena gracilis showed the same linear reaction course at both RuBP concentrations, indicating an association between an absence of fallover and an absence of the non-catalytic binding sites. This was supported by the results of an equilibrium binding assay for this enzyme with a transition state analogue. Green macroalgae and non-green algae contained the plant-type, fallover enzyme. RuBisCOs from Conjugatae, Closterium ehrenbergii, Gonatozygon monotaenium and Netrium digitus, showed a much smaller decrease in activity at 1 mM RuBP than the spinach enzyme and the reaction courses of these enzymes at 5 mM RuBP were almost linear. RuBisCO of a primitive type Conjugatae, Mesotaenium caldariorum, showed the same linear course at both RuBP concentrations. Sequencing of rbcL of these organisms indicated that Lys-305 was changed into arginine with Lys-21 conserved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.