Abstract

At low temperatures the configurational phase space of a macroscopic complex system (e.g., a spin-glass) of N ∼ 1023 interacting particles may split into an exponential number Ωs ∼ exp(const × N) of ergodic sub-spaces (thermodynamic states). It is usually assumed that the equilibrium collective behavior of such a system is determined by its ground thermodynamic states of the minimal free-energy density, and that the equilibrium free energies follow the distribution of exponential decay. But actually for some complex systems, the equilibrium free-energy values may follow a Gaussian distribution within an intermediate temperature range, and consequently their equilibrium properties are contributed by excited thermodynamic states. Based on this analysis, the re-weighting parameter y in the cavity approach of spin-glasses is easily understood. Depending on the free-energy distribution, the optimal y can either be equal to or be strictly less than the inverse temperature β.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.