Abstract
Immunohistochemical investigations were carried out to determine the pattern of distribution of methionine- and leucine-enkephalin-like materials in the cat pylorus, duodenum, ileum and proximal and distal colon. The present results indicate that leucine-enkephalin-like materials are less densely distributed than methionine-enkephalin-like materials, but that the two patterns of distribution show some similarities. Considerable regional differences exist however in the distribution of these enkephalin-like materials in the muscular layers. In the duodenum, ileum and proximal colon, the immunoreactivity was mainly confined to the myenteric plexus and the circular muscle layer, where it was present in nerve cell bodies and in numerous fibres. In the longitudinal muscle and submucous layers, a few immunoreactive fibres were observed which sometimes surrounded blood vessels. In the pylorus and the distal colon, however, numerous immunoreactive fibres were observed in the longitudinal and circular muscle layers; the immunoreactivity was detected in the cell bodies of numerous myenteric plexus neurons but those of only a few submucous plexus neurons. In addition, the pylorus tissues contained immunoreactive plexi which were localized either within the longitudinal muscle or between the serosa and the longitudinal muscle layer. These plexi were connected to the myenteric plexus by immunoreactive nerve strands. In all the small intestinal segments studied, numerous immunoreactive varicosities were present in the deep muscular plexus, in the inner part of the circular muscle layer. Our results suggest that in cats, the nervous control of external muscular layers mediated by enkephalins shows regional differences. In the pylorus and the distal colon, it involves both the longitudinal and circular muscle layers, whereas in other intestinal segments, only the circular muscle layer is involved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.