Abstract

We describe the distribution of axons immunoreactive for dopamine in pons and medulla oblongata of rat under normal conditions or after inhibition of monoamine oxidase or dopamine β-hydroxylase. In the pons of non-treated animal, fairly dense plexuses of dopamine-immunoreactive varicose fibers were found in the locus coeruleus, dorsal parabrachial and dorsal raphe nuclei, central gray and reticular formation dorsal to the superior olive. In the medulla oblongata, the immunoreactive fibers were abundant in the dorsal vagal complex, lateral paragigantocellular nucleus, midline raphe nuclei and spinal trigeminal nucleus. Monoamine oxidase inhibition made it possible to increase the intensity of immunoreactivity and consequently the number of labeled fibers in these areas, indicating that dopamine is perpetually oxidized by monoamine oxidase, and consequently in low concentration under normal conditions. Sparse dopamine-immunoreactive fibers were observed in the pontine gray, motor trigeminal nucleus, inferior olive and major axon bundles such as the dorsal and ventral tegmental bundles, where numerous noradrenergic fibers have been reported. In axons of these areas, intense dopamine-immunoreactivity was seen only after inhibition of dopamine-β-hydroxylase. It appears that dopamine is released and oxidized in response to autonomic changes such as hypoxia, hemorrhage, and cardiovascular variation in the caudal brainstem, as we have described elsewhere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.