Abstract

In this article, we aim to provide a statistical theory for object matching based on a lower bound of the Gromov-Wasserstein distance related to the distribution of (pairwise) distances of the considered objects. To this end, we model general objects as metric measure spaces. Based on this, we propose a simple and efficiently computable asymptotic statistical test for pose invariant object discrimination. This is based on a (β-trimmed) empirical version of the afore-mentioned lower bound. We derive the distributional limits of this test statistic for the trimmed and untrimmed case. For this purpose, we introduce a novel U-type process indexed in β and show its weak convergence. The theory developed is investigated in Monte Carlo simulations and applied to structural protein comparisons. Supplementary materials for this article are available online.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call