Abstract
The distribution of dislocations and twins over the cross section of shock-loaded copper and 18Cr-10Ni-Ti steel specimens is investigated experimentally and numerically. It is found that the volume fraction of twins near the loaded surface and a spall crack is an order of magnitude higher than their fraction at the center of the target. The features of twins arising in different parts of the target are discussed. A model of a twinning mechanism in coarse-grained metals is proposed and used for numerical simulation of the dislocation and twin depth distribution in shock-loaded targets. It is shown that in thin targets (less than 1 mm thick), the distribution of twins can be even more uniform than the distribution of the dislocations density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.