Abstract

A cytosolic NADP+-dependent dihydrodiol dehydrogenase (EC 1.3.1.20), that oxidizes dihydrodiol derivatives of benzene and naphthalene to the corresponding catechols, has been thought to play an important role in metabolic detoxification of carcinogenic polycyclic aromatic hydrocarbons (Oesch, et al., 1984) and in bioactivation of naphthalene in rabbit eye (van Heyningen, 1976). Dihydrodiol dehydrogenase was first isolated from rat liver (Vogel, et al., 1980) and has been subsequently identified as 3α-hydroxysteroid dehydrogenase (Penning, et al., 1984). The enzyme is a monomer of Mr35,000 and shows dehydrogenase activity for xenobiotic alicyclic alcohols and carbonyl reductase activity, which indicate that it also functions in carbonyl metabolism. Similar monomeric dihydrodiol dehydrogenases with broad substrate specificity for xenobiotics have been purified from other mammalian livers, and have been reported to be identical with 17s-hydroxysteroid dehydrogenase in the guinea pig (Hara, et al., 1986a), mouse (Sawada, et al., 1988) and rabbit (Hara, et al., 1986b), 3α(17β)-hydroxysteroid dehydrogenases in the hamster (Ohmura, et al., 1990), 3(20)α-hydroxysteroid dehydrogenase in the monkey (Hara, et al., 1989a), and aldehyde reductase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call