Abstract

Twenty-nine surface sediment samples from Effingham Inlet, a small fjord on the west coast of Vancouver Island, British Columbia, were analyzed for diatoms. This fjord has been selected for paleoceanographic investigation due to the presence of laminated sediments resulting from the dysoxic to anoxic bottom water conditions in the inner and outer basins of the inlet. Distributional patterns of the diatom microflora reflected proximity to littoral regions, phytoplankton production, and marine influence from outside the fjord. Principal components and cluster analyses of the microflora established four diatom assemblages with a clear separation between the inner and outer basin diatom floras. Inner basin stations were characterized by elevated absolute abundance with assemblages dominated by spring–early summer bloom taxa including Skeletonema costatum, Thalassiosira nordenskioeldii, and Thalassiosira pacifica. Chaetoceros spp. resting spores were abundant throughout Effingham Inlet, with the exception of the stations closest to the fjord head. Stations located in the outer basin and towards the fjord mouth had relatively lower absolute abundance yet showed a higher relative and absolute abundance of Thalassionema nitzschioides, Rhizosolenia setigera, Coscinodiscus radiatus, Ditylum brightwellii, Odontella longicruris, and Paralia sulcata in relation to the inner basin. Many of these latter taxa are often associated with late summer and autumn conditions in fjords along coastal British Columbia. Oceanographic data for Effingham Inlet suggest that increased offshore penetration is more likely to occur from summer to early fall, with a more restricted offshore influence in the inner basin. Diatom surface sediment assemblages in Effingham Inlet appear to reflect incursions of offshore waters into the fjord. Absolute abundance estimates and the preservation of lightly silicified taxa suggest excellent preservation of fossil material in the sediments of the predominantly anoxic inner basin. Preservation in the outer basin is reduced, reflecting more frequent recharge by oxygenated waters spilling over the outer sill into the basin. Our findings suggest the inner basin should be an optimal site for reconstruction of diatom production, with records from the outer basin providing more consistent information about offshore influence and coastal upwelling conditions over the Holocene. Estimates of diatom abundance within the inner basin sediment may serve as a good proxy of production, although proxy tracers of bottom water conditions and sedimentological analyses must be coupled to the diatom record to ensure depositional conditions were not influencing valve preservation or abundance. Our results suggest that fjords can serve as good environments for paleoceanographic reconstructions of both inshore and offshore conditions although careful site selection and understanding of processes affecting the microfossil record are essential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call