Abstract

AbstractWe study the distribution of the consensus formed by a broadcast-based consensus algorithm for cases in which the initial opinions of agents are random variables. We first derive two fundamental equations for the time evolution of the average opinion of agents. Using the derived equations, we then investigate the distribution of the consensus in the limit in which agents do not have any mutual trust, and show that the consensus without mutual trust among agents is in sharp contrast to the consensus with complete mutual trust in the statistical properties if the initial opinion of each agent is integrable. Next, we provide the formulation necessary to mathematically discuss the consensus in the limit in which the number of agents tends to infinity, and derive several results, including a central limit theorem concerning the consensus in this limit. Finally, we study the distribution of the consensus when the initial opinions of agents follow a stable distribution, and show that the consensus also follows a stable distribution in the limit in which the number of agents tends to infinity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.