Abstract

1. The distribution of climbing fibres on cerebellar Purkinje cells has been studied with intracellular recordings in X-irradiated and normal rats. 2. In the treated rats, multiple steps in the post-synaptic potential were elicited in 57% of the Purkinje cells by graded stimulation of the climbing fibres, the response was all-or-none in character in the other cells and in all Purkinje cells recorded in normal animals. In the neurones exhibiting the former type of response, no collision was seen along the afferent fibres during interaction experiments between just-threshold juxtafastigial and maximal olivary stimulations, whereas a collision always occurred when all-or-none responses were recorded. 3. These results show that in X-irradiated rats, the majority of Purkinje cells have a multiple innervation by two to four climbing fibres, instead of the one-to-one relationship seen normally. 4. Input resistances and total electrotonic lengths of Purkinje cells were measured in normal and treated rats. Mean values for these two parameters were higher than normal in multiply innervated cells. 5. Mean time course and mean current for reversal of the post-synaptic potential elicited in Purkinje cells by stimulation of the climbing fibres were nearly the same in mono- and in multiply innervated neurones. In multiply innervated cells, time courses and currents for reversal were independent of the size of the response or varied slightly with it, suggesting that the climbing fibres involved innervated territories whose electrotonic distance from the recording site were either the same or slightly different. 6. Interactions between two all-or-none steps of the graded post-synaptic potential evoked in multiply innervated cells by juxtafastigial and olivary stimulations revealed either a very weak or a very marked shunting effect between synapses of the two climbing fibres involved. 7. These results indicate that the over-all distribution of climbing fibre synapses on multiply innervated Purkinje cells is not grossly abnormal and that two fibres contacting a given cell can be either intermingled on the same dendrites, or segregated on distinct dendritic branches. 8. In general, the present study does not suggest the existence of a strong competition among climbing fibres innervating each Purkinje cell during development at least when granule cells are absent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.