Abstract

The distributional characteristics of microorganisms in karst cave ecosystems have been widely studied. However, in such a dark, humid, and oligotrophic habitat, studies on the differences in carbon-sequestering bacteria in multiple habitats are limited. Therefore, to learn the distribution characteristics of carbon-sequestering colonies in cave habitats and their correlation with habitat factors (e.g., pH, Ca2+, Mg2+, etc.), samples from five cave habitats (weathered rock walls, underground river water, drips, sediments, and air) were collected from the twilight and dark zones of Shiziyan Cave (CO2 concentration 5385 ppm). The results of high-throughput sequencing and statistical analyses showed that there were significant differences in the distribution of communities in different habitats, with higher abundance in sediments habitat and underground river water habitat, and the dominant phyla of Pseudomonadota (30.53%) and Cyanobacteria (75.11%) in these two habitats. The microbial diversity of the carbon-sequestering microbial community was higher in sediments than in underground river water. The pH, and Ca2+, SO42−, and NO3− concentrations can alter the diversity of carbon-sequestering microbes, thereby affecting carbon cycling in caves. Carbon metabolism analyses suggest that microbes in the habitat can cooperate and coexist by participating in different carbon metabolic pathways. These results expanded our understanding of carbon-sequestering microbial communities in cave systems and their responses to the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.