Abstract

Huanglongbing (HLB, citrus greening disease) in the major citrus-producing states of the United States is associated with Candidatus Liberibacter asiaticus (CLas), which is vectored by the Asian citrus psyllid (ACP). Surveys were conducted in Texas from 2007 to 2017 to assess the prevalence and titer of CLas in ACPs and citrus trees. ACP and citrus leaf tissue samples were collected from suspect trees in residential areas and commercial groves (orchards) and assayed for CLas by quantitative PCR. CLas detection in ACPs (2011) preceded that of citrus trees (2012) by several months. Annual incidences of CLas-positive ACPs and leaf tissue followed an exponential growth pattern over the survey period, varying from 0.03 to 28.7% in ACPs and 0.6 to 36.5% in citrus trees. There was a significant and positive relationship between the monthly incidences of CLas-positive ACP and leaf tissue samples. The proportion of HLB detection sites also increased with time, reaching 26 and 40% of commercial groves and residential sites, respectively, by 2017. Seasonal variations were observed in the incidences of CLas-positive ACPs and citrus trees such that significantly more CLas-positive ACPs and trees were recorded during the fall and winter of a given year relative to the hot summer. A temporal analysis of the class distribution of cycle threshold values revealed a trend of increased bacterial accumulation in ACPs and trees over time, with the trend more pronounced for the former than the latter host type. These findings provide a comprehensive insight into the ongoing CLas/HLB epidemic in Texas, with potential lessons for California and other citrus-producing areas where the disease is not yet established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.