Abstract

The placement of the reticular thalamic nucleus (RTN) between the dorsal thalamus and the cortex and the inhibitory nature of reticulothalamic projections has led to suggestions that it “gates” the flow of sensory information to the cortex. The New World diurnal monkey, the marmoset, Callithrix jacchus is emerging as an important “model primate” for the study of sensory processing. We have examined the distribution of Nissl-stained somata and calbindin, parvalbumin, and calretinin immunoreactivity in the ventral thalamus for comparison with other species. Cells were labeled using standard immunohistochemistry, ExtraAvidin-HRP, and diaminobenzidine reaction products. The RTN is constituted by a largely homogeneous population of parvalbumin immunoreactive cells with respect to size and orientation. Calbindin and calretinin immunoreactive cells were only found along the medial edge of the RTN adjacent to the external medullary lamina of the dorsal thalamus and laterally near the ventral RTN. These cells were considered to be part of the zona incerta (ZI). The marmoset ZI could be subdivided into dorsal and ventral regions on the basis of its immunoreactivity to calcium binding proteins. Both the ZI and nucleus subthalamicus Luysi contained scattered calbindin and calretinin immunoreactive cells with well-defined dendritic processes. These cells were clearly different to cells in the dorsal thalamus. Parvalbumin immunoreactive cells in RTN, ZI, and subthalamic nucleus were on average larger than neurons positive for the other calcium binding proteins. Future studies reporting the afferent and efferent projections to the RTN must view their results in terms of the close apposition of RTN and ZI somata.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.