Abstract

Boron (B) and phosphorous (P) co-doped colloidal silicon nanocrystals (Si NCs) have unique size-dependent optical properties, which lead to potential applications in optoelectronic and biomedical applications. However, the microstructure of the B and P co-doped colloidal Si NCs – in particular, the exact location of the dopant atoms in real space, has not been studied. A lack of understanding of this underlying question limits our ability to better control sample fabrication, as well as our ability to further develop the optical properties. To study the microstructure, a process enabling atom probe tomography (APT) of colloidal Si NCs was developed. A dispersion of colloidal Si NCs in a SiO2 sol-gel solution and a low temperature curing are demonstrated as the key sample preparation steps. Our APT results demonstrate that a B-rich region exists at the surface of the Si NCs, while P atoms are distributed within the Si NCs. First principles density functional theory calculations of a Si NC embedded in SiO2 matrix reveal that P atoms, which always prefer to reside inside a Si NC, significantly influence the distribution of B atoms. Specifically, P atoms lower the B diffusion barrier at Si/SiO2 interface and stabilize B atoms to reside within individual Si NCs. We propose that the B-modified surface changes the chemical properties of the Si NCs by (i) offering chemical resistance to attack by HF and (ii) enabling dispersibility in solution without aggregation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call