Abstract

Aeromonas spp. are opportunistic pathogens related to multiple infectious diseases in ornamental fishes. In the present study, the antimicrobial susceptibility, resistance genes, and integrons of 65 goldfish-borne Aeromonas spp. were evaluated. The isolates were identified as A. hydrophila (n = 30), A. veronii (n = 32), and A. punctata (n = 3) by gyrB sequencing. The antimicrobial susceptibility testing of the isolates designated that most of the isolates were resistant to amoxicillin (100.00%), nalidixic acid (100.00%), ampicillin (98.46%), tetracycline (92.31%), rifampicin (86.15%), and cephalothin (61.54%) and each of the isolates showed multiple antimicrobial resistance phenotype (resistant to ≥3 classes of antimicrobials). PCR amplification of antimicrobial resistance genes revealed that the plasmid-mediated quinolone resistance gene, qnrS, was the most prevalent (73.85%) among the isolates. The other antimicrobial resistance genes were detected in the following proportions: qnrB (26.15%), aac(6')-Ib-cr (4.60%), tetA (16.92%), tetE (21.54%), aac(6')-Ib (29.23%), and aphAI-IAB (7.69%). The IntI gene was found in 64.62% isolates, and four class 1 integron gene cassette profiles (incomplete dfrA1, catB3-aadA1, dfrA1-orfC, and qacE2-orfD) were identified. These data suggest that goldfish-borne Aeromonas spp. serve as a reservoir of antimicrobial resistance genes and class 1 integrons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call