Abstract

Cholinergic systems in the dorsal horn are involved in antinociception but little is known about the organisation of receptors that mediate this process. In this study we examined immunocytochemical properties of dorsal horn neuronal cell bodies that express the m2 muscarinic acetylcholine receptor. Tissue was examined with confocal laser scanning microscopy and quantitative analysis performed. Immunoreactive cells were found throughout the dorsal horn and in lamina X. Quantitative analysis revealed that 22% of neuronal somata in the dorsal horn possess the receptor. The greatest concentration of cells was found in deeper laminae (IV–VI) and around lamina X. A proportion of cholinergic cells (labelled with an antibody against choline acetyltransferase) were immunoreactive for the receptor (approximately, 40% of dorsal horn cells and 44% of lamina X cells). Populations of presumed inhibitory interneurons also displayed immunoreactivity for the receptor. Between 27–34% of cells immunoreactive for GABA, nitric oxide synthase and the somatostatin receptor 2A expressed the receptor but only 8% of parvalbumin-immunoreactive cells displayed receptor immunoreactivity. Cells labelled with neurotensin, which belong to a subgroup of excitatory neurons, displayed no receptor immunoreactivity. A small number neurokinin-1 receptor-immunoreactive cells in lamina I possessed m2 immunoreactivity but 42% of laminae III/IV neurokinin-1 cells possessed it. This study shows that a significant proportion of cell bodies in the dorsal horn express the muscarinic m2 acetylcholine receptor. The receptor is present on some cholinergic neurons and therefore may function as an autoreceptor. It is associated with inhibitory local circuit neurons and may have a role in the modulation of specific inhibitory systems. It is also found on a proportion of projection cells that possess the neurokinin-1 receptor. This could be the basis of some of the antinociceptive actions of acetylcholine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call