Abstract

The modified Tessier’s sequential extraction procedure and rhizobox cultivation were employed to investigate the distribution of aluminum (Al) fractions in the acidic rhizosphere soil of Masson pine (Pinus massoniana lamb) seedlings. The results showed that the Al in soils was fractionated into five operationally defined fractions. Three sets of soil samples used in the rhizoboxes were collected from the three forest sites in the southeast of China: Sichuan, Zhejian, and Jiangsu. At the end of 100-day cultivation, the rhizosphere Al fractions for the original or bulk soils were in the order of residual > iron-manganese (Fe-Mn) oxides > organic > carbonate > exchangeable. However, in rhizosphere soil, the Al fraction follows the order of residual > organic > Fe-Mn oxides > carbonate > exchangeable. On average, the rhizosphere experienced significant increase in organically bound Al and slight decrease in exchangeable Al contents, but had decreases in contents for the other three Al fractions compared to the nonrhizosphere. The correlation analysis indicated that the Al contents accumulated in roots were significantly and positively correlated with exchangeable Al contents in the rhizosphere, and also characterized by the major portion of organically bound Al, which exhibited a bioavailable transformation of Al fractions. Results indicated that decreases in both redox potential and soil pH, as well as increase in dissolved organic carbon (DOC), were observed in the rhizosphere. Exchangeable Al and organic Al fractions were dependent mainly on soil pH (hydrogen ion concentration) and DOC, accordingly. Decreasing rhizosphere pH from 5.93 to 3.42 accelerated the secretion of organic carbon. These data are helpful for understanding the mobility and bioavailability of Al fractions in the acidic rhizosphere soils of Masson pine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call