Abstract

Activities of acid phosphatase, beta-glucuronidase, N-acethyl-beta-D-glucosaminidase and acid beta-galactosidase were investigated histochemically in rabbit corneas. Frozen sections after block fixation in cold 4% formaldehyde with 1% CaCl2 followed by washing in cold physiological saline as well as cold microtome sections of corneas quenched in petroleter chilled with acetone-dry ice mixture, transferred to nonprecooled slides or semipermeable membranes were used. Standard aqueous media were employed in the case of free-floating frozen sections of fixed corneas as well as of cold mictrotome sections (postfixed in cold 4% formaldehyde). Agar media were used in connection with the technic of semipermeable membranes. Gomori method (in the case of acid phosphatase), simultaneous azocoupling methods (substrates derivated of naphthol-AS-BI with hexazonium-p-rosanilin) in the case of acid phosphatase, beta-glucuronidase and N-acetyl-beta-D-glucosaminidase and the indigogenic method in the case of acid beta-galactosidase were applied. Enzyme activities in sections of fixed corneas were minimal in comparison with those in cold microtome sections of unfixed material revealed particularly with the technic of semipermeable membranes which is to be preferred. This technic is recommended in studies concerned with lysosomal enzymes in the cornea, particularly in keratocytes. All enzymes investigated were present in corneal epithelium, keratocytes and endothelium. Acid phosphatase displayed the highest activity followed by beta-glucuronidase and acetyl-beta-D-glucosaminidase. The activity of beta-galactosidase was the lowest. For the demonstration of activities in keratocytes sections parallel to the surface are very suitable. In these sections enzyme activities were demonstrated in small granules (apparently lysosomes) present in the central part of their cytoplasm as well as in projections. Diffuse staining was also seen, being the highest in the case of acid phosphatase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call