Abstract

The problem of the temporal and spatial dependences of the parameters of the action of a modulated fast-electron beam on a dense gas is posed on the basis of the transport equation. The problem is simplified by making it nondimensional and by transforming to the Fokker-Planck approximation. A Green's function formalism is developed for this problem and is used to express the solution of the general nonstationary problem in the form of a convolution of a nonstationary boundary flow with a stationary Green's function. The use of the derived equation is illustrated using as an example the solution of a problem with the simplest stationary Green's function corresponding to the “straight-ahead” approximation. This approximation is used to consider a general relativistic case with model scattering cross sections. The methods and results of a numerical computer solution of the nonstationary problem of electron retardation in the upper layer of the atmosphere are surveyed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.