Abstract

5-hydroxymethylcytosine (5-hmC) is a modified form of cytosine recently found in mammalians and is believed, like 5-methylcytosine, to also play an important role in switching genes on and off. By utilizing a newly developed 5-hmC immunoassay, we determined the abundance of 5-hmC in human tissues and compared 5-hmC states in normal colorectal tissue and cancerous colorectal tissue. Significant differences of 5-hmC content in different tissues were observed. The percentage of 5-hmC measured is high in brain, liver, kidney and colorectal tissues (0.40–0.65%), while it is relatively low in lung (0.18%) and very low in heart, breast, and placenta (0.05-0.06%). Abundance of 5-hmC in the cancerous colorectal tissues was significantly reduced (0.02–0.06%) compared to that in normal colorectal tissues (0.46–0.57%). Our results showed for the first time that 5-hmC distribution is tissue dependent in human tissues and its abundance could be changed in the diseased states such as colorectal cancer.

Highlights

  • DNA methylation is an epigenetic modification which is catalyzed by DNA cytosine-5-methyltransferases (DNMTs) and occurs at the 5-position (C5) of the cytosine ring, within CpG dinucleotides

  • Region-specific DNA methylation is mainly found in 5 -CpG-3 dinucleotides within the promoters or in the first exon of genes, which is an important pathway for the repression of gene transcription in diseased cells

  • To the best of our knowledge, this is the first paper of 5-hmC distribution in different human tissues and 5-hmC status in solid tumor

Read more

Summary

Introduction

DNA methylation is an epigenetic modification which is catalyzed by DNA cytosine-5-methyltransferases (DNMTs) and occurs at the 5-position (C5) of the cytosine ring, within CpG dinucleotides. Region-specific DNA methylation is mainly found in 5 -CpG-3 dinucleotides within the promoters or in the first exon of genes, which is an important pathway for the repression of gene transcription in diseased cells. 5-hmC is a hydroxylated and methylated form of cytosine and was first seen in bacteriophages in 1952 [7]. In mammals, it can be generated by a TET protein-mediated reaction [5]. 5-hmC might play an important and different role in regulation of DNA methylation, chromatin remodeling, and gene expression in a tissue-, cell-, or organ-specific manner

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call