Abstract

Radioactivity distribution and transfer factor (TF) in plants are crucial parameters used to assess radioactive contamination in the environment and its risks to humans. In this study, the activities of 226Ra, 232Th, and 40K were successfully measured via gamma-ray spectrometry on rice plant components (root, straw, husk, and grain) and on corresponding soil samples collected from paddy fields in Penang, Malaysia. Soil physico-chemical characteristics (pH, cation exchange capacity, electrical conductivity, organic matter, and soil texture) were also analyzed for their estimated effects on soil–grain TF. A major fraction of the total 226Ra and 232Th activities measured as 47% and 57%, respectively, were concentrated in the roots, whereas only about 9% and 8% were distributed in the grains, correspondingly. 40K activity accumulation was about 59% in the straw and 7% in the grains. Rice soil–grain TFs were observed in the ranges of (0.06–0.36) × 10−1 for 226Ra, (0.04–0.14) × 10−1 for 232Th, and (0.74–4.72) × 10−1 for 40K. Results showed that the selected radionuclide distributions in rice are dependent on component type, and their grain concentrations are not linearly related to their soil concentrations. These findings indicated that uptake predominantly depends on soil physico-chemical characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.