Abstract
The number of electric vehicles (EVs) is expected to increase significantly in the near future, which will affect the operation of future power networks. This study investigates the impact of EVs on the distribution network voltage profile by collecting measurements from residential, slow commercial, and fast public EV charging stations throughout the annual cycle. It is revealed from the data that annual utilization factors for residential, slow commercial, and fast public charging stations are 89%, 55%, and 24%, respectively. The optimal power flow solutions have been presented without the EV and with EV (home, commercial, and public) load profiles. Simulation results identify the voltage violation's extent, instant, and duration that may affect the future distribution grid. Most voltage violations happen in the evening, weekday afternoon, and midday for residential, slow commercial, and fast public EV charging stations, respectively. Furthermore, multiple enabling technologies have been demonstrated to reduce voltage violations, such as coordinated charging (reduced voltage violation by 50%), renewable charging (by 50%), and combinations of multiple types of customers (by 30%). This study presents some key insights into future power system operational scenarios with widespread EV charging stations that can be managed by multiple enabling technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.