Abstract

The particle swarm optimization (PSO) algorithm is widely used to solve a variety of complicated engineering problems. However, PSO may suffer from an effective balance between local and global search ability in the solution search process. This study proposes a new acceleration coefficient for the PSO algorithm to overcome this issue. The proposed coefficient is implemented on the distribution network reconfiguration (DNR) problem to reduce power loss. The lowest power loss is obtained while problem constraints (maintain radial structure, voltage limits, and power flow balance) are satisfied with the proposed method. The validity of the proposed acceleration coefficient-based binary particle swarm optimization (BPSO) in handling the DNR problem is examined through simulation studies on IEEE 33-bus, P&G 69-bus, and 84-bus Taiwan Power Company (TPC) practical distribution networks. Furthermore, the DNR problem is evaluated regarding energy cost and environmental issues. Finally, the average computational times of the different acceleration coefficient-based PSO methods are compared. The solution speed of the proposed acceleration coefficient-based method is faster than the other methods in the DNR problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call